LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Bio-Based Poly(Butylene Adipate-co-Butylene Itaconate) Copolyesters with Pentaerythritol: A Thermal, Mechanical, Rheological, and Molecular Dynamics Simulation Study

Bio-based unsaturated poly(butylene adipate-co-butylene itaconate) (PBABI) aliphatic copolyesters were synthesized with pentaerythritol (PE) as a modifier, observing the melting point, crystallization, and glass transition temperatures were decreased from 59.5 to… Click to show full abstract

Bio-based unsaturated poly(butylene adipate-co-butylene itaconate) (PBABI) aliphatic copolyesters were synthesized with pentaerythritol (PE) as a modifier, observing the melting point, crystallization, and glass transition temperatures were decreased from 59.5 to 19.5 °C and 28.2 to −9.1 °C as an increase of itaconate concentration, and Tg ranged from −54.6 to −48.1 °C. PBABI copolyesters tend to the amorphous state by the existence of the BI unit above 40 mol%. The yield strength, elongation, and Young’s modulus at different BA/BI ratios were valued in a range of 13.2–13.8 MPa, 575.2–838.5%, and 65.1–83.8 MPa, respectively. Shear-thinning behavior was obtained in all BA/BI ratios of PBABI copolyesters around an angular frequency range of 20–30 rad s−1. Furthermore, the thermal and mechanical properties of PBABI copolyesters can be well regulated via controlling the itaconic acid contents and adding the modifier. PBABI copolyesters can be coated on a 3D air mesh polyester fabric to reinforce the mechanical property for replacing traditional plaster applications.

Keywords: adipate butylene; itaconate; butylene adipate; poly butylene; bio based; butylene

Journal Title: Polymers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.