LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microwave Foaming of Materials: An Emerging Field

Photo by hmaguire from unsplash

In the last two decades, the application of microwave heating to the processing of materials has to become increasingly widespread. Microwave-assisted foaming processes show promise for industrial commercialization due to… Click to show full abstract

In the last two decades, the application of microwave heating to the processing of materials has to become increasingly widespread. Microwave-assisted foaming processes show promise for industrial commercialization due to the potential advantages that microwaves have shown compared to conventional methods. These include reducing process time, improved energy efficiency, solvent-free foaming, reduced processing steps, and improved product quality. However, the interaction of microwave energy with foaming materials, the effects of critical processing factors on microwave foaming behavior, and the foamed product’s final properties are still not well-explored. This article reviews the mechanism and principles of microwave foaming of different materials. The article critically evaluates the impact of influential foaming parameters such as blowing agent, viscosity, precursor properties, microwave conditions, additives, and filler on the interaction of microwave, foaming material, physical (expansion, cellular structure, and density), mechanical, and thermal properties of the resultant foamed product. Finally, the key challenges and opportunities for developing industrial microwave foaming processes are identified, and areas for potential future research works are highlighted.

Keywords: emerging field; foaming materials; product; microwave foaming; materials emerging

Journal Title: Polymers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.