LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasma-Stimulated Super-Hydrophilic Surface Finish of Polymers

Photo from wikipedia

Super-hydrophilicity is a desired but rarely reported surface finish of polymer materials, so the methods for achieving such a property represent a great scientific and technological challenge. The methods reported… Click to show full abstract

Super-hydrophilicity is a desired but rarely reported surface finish of polymer materials, so the methods for achieving such a property represent a great scientific and technological challenge. The methods reported by various authors are reviewed and discussed in this paper. The super-hydrophilic surface finish has been reported for polymers functionalized with oxygen-rich surface functional groups and of rich morphology on the sub-micrometer scale. The oxygen concentration as probed by X-ray photoelectron spectroscopy should be above 30 atomic % and the roughness as determined by atomic force microscopy over a few nm, although most authors reported the roughness was close to 100 nm. A simple one-step oxygen plasma treatment assures for super-hydrophilicity of few polymers only, but the technology enables such a surface finish of almost any fluorine-free polymer providing a capacitively coupled oxygen plasma that enables deposition of minute quantities of inorganic material is applied. More complex methods include deposition of at least one coating, followed by surface activation with oxygen plasma. Fluorinated polymers require treatment with plasma rich in hydrogen to achieve the super-hydrophilic surface finish. The stability upon aging depends largely on the technique used for super-hydrophilization.

Keywords: oxygen; super hydrophilic; plasma; hydrophilic surface; surface; surface finish

Journal Title: Polymers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.