Natural-derived biopolymers are suitable candidates for developing specific and selective performance-enhanced antimicrobial formulations. Composite polymeric particles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and chitosan, P(3HB-3HV)-CS, are herein proposed as biocompatible and biodegradable delivery… Click to show full abstract
Natural-derived biopolymers are suitable candidates for developing specific and selective performance-enhanced antimicrobial formulations. Composite polymeric particles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and chitosan, P(3HB-3HV)-CS, are herein proposed as biocompatible and biodegradable delivery systems for bioproduced antibiotics: bacitracin (Bac), neomycin (Neo) and kanamycin (Kan). The stimuli-responsive spheres proved efficient platforms for boosting the antibiotic efficiency and antibacterial susceptibility, as evidenced against Gram-positive and Gram-negative strains. Absent or reduced proinflammatory effects were evidenced on macrophages in the case of Bac-/Neo- and Kan-loaded spheres, respectively. Moreover, these systems showed superior ability to sustain and promote the proliferation of dermal fibroblasts, as well as to preserve their ultrastructure (membrane and cytoskeleton integrity) and to exhibit anti-oxidant activity. The antibiotic-loaded P(3HB-3HV)-CS spheres proved efficient alternatives for antibacterial strategies.
               
Click one of the above tabs to view related content.