LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Novel Benzoxazines Containing Sulfur and Their Application in Rubber Compounds

Photo by vlisidis from unsplash

This work reports the synthesis and successful use of novel benzoxazines as reinforcing resins in polyisoprene rubber compounds. For this purpose, three new dibenzoxazines containing one (4DTP-fa) or two heteroatoms… Click to show full abstract

This work reports the synthesis and successful use of novel benzoxazines as reinforcing resins in polyisoprene rubber compounds. For this purpose, three new dibenzoxazines containing one (4DTP-fa) or two heteroatoms of sulfur (3DPDS-fa and 4DPDS-fa) were synthesized following a Mannich condensation reaction. The structural features of each benzoxazine precursor were characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) and Raman. The new precursors showed well suited reactivity as characterized by differential scanning calorimetry (DSC) and rheology and were incorporated in rubber compounds. After the mixing, the curing profiles, morphologies and mechanical properties of the materials were tested. These results show that the structural feature of each isomer was significantly affecting its behavior during the curing of the rubber compounds. Among the tested benzoxazines, 3DPDS-fa exhibited the best ability to reinforce the rubber compound even compared to common phenolic resin. These results prove the feasibility to reinforce rubber compounds with benzoxazine resins as a possible alternative to replace conventional phenolic resins. This paper provides the first guide to use benzoxazines as reinforcing resins for rubber applications, based on their curing kinetics.

Keywords: novel benzoxazines; synthesis novel; benzoxazines containing; containing sulfur; rubber compounds

Journal Title: Polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.