LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biopolymer Nanocomposite Materials Based on Poly(L-lactic Acid) and Inorganic Fullerene-like WS2 Nanoparticles

Photo by efekurnaz from unsplash

In the current study, inorganic fullerene (IF)-like tungsten disulphide (WS2) nanoparticles from layered transition metal dichalcogenides (TMDCs) were introduced into a poly(L-lactic acid) (PLLA) polymer matrix to generate novel bionanocomposite… Click to show full abstract

In the current study, inorganic fullerene (IF)-like tungsten disulphide (WS2) nanoparticles from layered transition metal dichalcogenides (TMDCs) were introduced into a poly(L-lactic acid) (PLLA) polymer matrix to generate novel bionanocomposite materials through an advantageous melt-processing route. The effectiveness of employing IF-WS2 on the morphology and property enhancement of the resulting hybrid nanocomposites was evaluated. The non-isothermal melt–crystallization and melting measurements revealed that the crystallization and melting temperature as well as the crystallinity of PLLA were controlled by the cooling rate and composition. The crystallization behaviour and kinetics were examined by using the Lui model. Moreover, the nucleating effect of IF-WS2 was investigated in terms of Gutzow and Dobreva approaches. It was discovered that the incorporation of increasing IF-WS2 contents led to a progressive acceleration of the crystallization rate of PLLA. The morphology and kinetic data demonstrate the high performance of these novel nanocomposites for industrial applications.

Keywords: poly lactic; ws2; fullerene like; ws2 nanoparticles; inorganic fullerene; lactic acid

Journal Title: Polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.