LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Nickel Spinel Ferrites Nanoparticles Coated with Thermally Reduced Graphene Oxide for EMI Shielding in the Microwave, UV, and NIR Regions

Photo by vlisidis from unsplash

The co-precipitation and in situ modified Hummers’ method was used to synthesize Nickel Spinal Ferrites (NiFe) nanoparticles and NiFe coated with Thermally Reduced Graphene Oxide (TRGO) (NiFe-TRGO) nanoparticles, respectively. By… Click to show full abstract

The co-precipitation and in situ modified Hummers’ method was used to synthesize Nickel Spinal Ferrites (NiFe) nanoparticles and NiFe coated with Thermally Reduced Graphene Oxide (TRGO) (NiFe-TRGO) nanoparticles, respectively. By using polyvinyl chloride (PVC), tetrahydrofuran (THF), and NiFe-TRGO, the nanocomposite film was synthesized using the solution casting technique with a thickness of 0.12–0.13 mm. Improved electromagnetic interference shielding efficiency was obtained in the 0.1–20 GHz frequency range. The initial assessment was done through XRD for the confirmation of the successful fabrication of nanoparticles and DC conductivity. The microstructure was analyzed with scanning electron microscopy. The EMI shielding was observed by incorporating a filler amount varying from 5 wt.% to 40 wt.% in three different frequency regions: microwave region (0.1 to 20 GHz), near-infrared (NIR) (700–2500 nm), and ultraviolet (UV) (200–400 nm). A maximum attenuation of 65 dB was observed with a 40% concentration of NiFe-TRGO in nanocomposite film.

Keywords: graphene oxide; thermally reduced; coated thermally; reduced graphene; emi shielding

Journal Title: Polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.