The scavenging and detection of sulfur hexafluoride (SF6) decomposition products (SO2, H2S, SO2F2, SOF2) critically matters to the stable and safe operation of gas-insulated switchgear (GIS) equipment. In this paper,… Click to show full abstract
The scavenging and detection of sulfur hexafluoride (SF6) decomposition products (SO2, H2S, SO2F2, SOF2) critically matters to the stable and safe operation of gas-insulated switchgear (GIS) equipment. In this paper, the Rh-doped nitrogen vacancy boron nitride monolayer (Rh-VNBN) is proposed as a gas scavenger and sensor for the above products. The computational processes are applied to investigate the configurations, adsorption and sensing processes, and electronic properties in the gas/Rh-VNBN systems based on the first-principle calculations. The binding energy (Eb) of the Rh-VNBN reaches −8.437 eV, while the adsorption energy (Ead) and band gap (BG) indicate that Rh-VNBN exhibits outstanding adsorption and sensing capabilities. The density of state (DOS) analysis further explains the mechanisms of adsorption and sensing, demonstrating the potential use of Rh-VNBN in sensors and scavengers of SF6 decomposition products. This study is meaningful as it explores new gas scavengers and sensors of SF6 decomposition products to allow the operational status assessment of GIS equipment.
               
Click one of the above tabs to view related content.