LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of Multifunctional Plasma Cured Cellulose Fibers Coated with Photo-Induced Nanocomposite toward Self-Cleaning and Antibacterial Textiles

Photo from wikipedia

Multifunctional fibrous surfaces with ultraviolet protection, self-cleaning, or antibacterial activity have been highly attractive. Nanocomposites consisting of silver (AgNPs) and titanium dioxide (TiO2 NPs) nanoparticles (Ag/TiO2) were developed and coated… Click to show full abstract

Multifunctional fibrous surfaces with ultraviolet protection, self-cleaning, or antibacterial activity have been highly attractive. Nanocomposites consisting of silver (AgNPs) and titanium dioxide (TiO2 NPs) nanoparticles (Ag/TiO2) were developed and coated onto the surface of viscose fibers employing a straightforward pad–dry–cure procedure. The morphologies and elemental compositions were evaluated by scan electron microscopy (SEM), infrared spectra (FTIR), and energy-dispersion X-ray spectra (EDS). The resultant multifunctional textile materials displayed antibacterial and photo-induced catalytic properties. The photocatalyzed self-cleaning properties were investigated employing the photochemical decay of methylthioninium chloride, whereas the antibacterial properties were studied versus E. coli. The viscose fibers coated with Ag/TiO2 nanocomposite demonstrated improved efficiency compared with viscose fibers coated with pure anatase TiO2 nano-scaled particles.

Keywords: viscose fibers; photo induced; fibers coated; cleaning antibacterial; self cleaning

Journal Title: Polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.