LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Polymer Dissolution Temperature and Conditioning Time on the Morphological and Physicochemical Characteristics of Poly(Vinylidene Fluoride) Membranes Prepared by Non-Solvent Induced Phase Separation

Photo from wikipedia

This work reports on the production of poly(vinylidene fluoride) (PVDF) membranes by non-solvent induced phase separation (NIPS) using N,N-dimethylformamide (DMF) as solvent and water as non-solvent. The influence of the… Click to show full abstract

This work reports on the production of poly(vinylidene fluoride) (PVDF) membranes by non-solvent induced phase separation (NIPS) using N,N-dimethylformamide (DMF) as solvent and water as non-solvent. The influence of the processing conditions in the morphology, surface characteristics, structure, thermal and mechanical properties were evaluated for polymer dissolution temperatures between 25 and 150 °C and conditioning time between 0 and 10 min. Finger-like pore morphology was obtained for all membranes and increasing the polymer dissolution temperature led to an increase in the average pore size (≈0.9 and 2.1 µm), porosity (≈50 to 90%) and water contact angle (up to 80°), in turn decreasing the β PVDF content (≈67 to 20%) with the degree of crystallinity remaining approximately constant (≈56%). The conditioning time did not significantly affect the polymer properties studied. Thus, the control of NIPS parameters proved to be suitable for tailoring PVDF membrane properties.

Keywords: conditioning time; polymer dissolution; non solvent

Journal Title: Polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.