LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Catalytic Polymerization of Phthalonitrile Resins by Carborane with Enhanced Thermal Oxidation Resistance: Experimental and Molecular Simulation

Photo by enchaxcreative from unsplash

Biphenyl phthalonitrile (BPh) resins with good thermal and thermo-oxidative stability demonstrate great application potential in aerospace and national defense industries. However, BPh monomer has a high melting point, poor solubility,… Click to show full abstract

Biphenyl phthalonitrile (BPh) resins with good thermal and thermo-oxidative stability demonstrate great application potential in aerospace and national defense industries. However, BPh monomer has a high melting point, poor solubility, slow curing speed and high curing temperature. It is difficult to control the polymerization process to obtain the resins with high performance. Here, a BPh prepolymer (BPh-Q) was prepared by reacting 1,7-bis(hydroxymethyl)-m-carborane (QCB) with BPh monomers. The BPh-Q exhibited much better solubility, faster curing speed and lower curing temperature compared with pure BPh and BPh modified with bisphenol A (BPh-B, a common prepolymer of BPh). Thus, the polymerization process of BPh was greatly accelerated at a low temperature, resulting in a BPh resin with enhanced thermostability and oxidation resistance. The experimental and theoretical models revealed the promotion effect of B-H bond on the curing reaction of phthalonitrile via Markovnikov addition reaction due to the special steric structure of carborane. This study provided an efficient method to obtain low-temperature curing phthalonitrile resins with high thermal and thermo-oxidative resistance, which would be potentially useful for the preparation of high-performance cyanide resin-based composites.

Keywords: phthalonitrile; bph; oxidation resistance; carborane; polymerization

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.