LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent Developments in Artificial Super-Wettable Surfaces Based on Bioinspired Polymeric Materials for Biomedical Applications

Photo from wikipedia

Inspired by nature, significant research efforts have been made to discover the diverse range of biomaterials for various biomedical applications such as drug development, disease diagnosis, biomedical testing, therapy, etc.… Click to show full abstract

Inspired by nature, significant research efforts have been made to discover the diverse range of biomaterials for various biomedical applications such as drug development, disease diagnosis, biomedical testing, therapy, etc. Polymers as bioinspired materials with extreme wettable properties, such as superhydrophilic and superhydrophobic surfaces, have received considerable interest in the past due to their multiple applications in anti-fogging, anti-icing, self-cleaning, oil–water separation, biosensing, and effective transportation of water. Apart from the numerous technological applications for extreme wetting and self-cleaning products, recently, super-wettable surfaces based on polymeric materials have also emerged as excellent candidates in studying biological processes. In this review, we systematically illustrate the designing and processing of artificial, super-wettable surfaces by using different polymeric materials for a variety of biomedical applications including tissue engineering, drug/gene delivery, molecular recognition, and diagnosis. Special attention has been paid to applications concerning the identification, control, and analysis of exceedingly small molecular amounts and applications permitting high cell and biomaterial cell screening. Current outlook and future prospects are also provided.

Keywords: super wettable; wettable surfaces; polymeric materials; artificial super; surfaces based; biomedical applications

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.