LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of High Temperature Resistant Stereocomplex PLA for Injection Moulding

Photo from wikipedia

In this study, the production of stereocomplex PLA formulations (sc-PLA) by compounding and subsequent injection moulding at different mould temperatures was investigated. Several selective nucleating agents were identified and compounded… Click to show full abstract

In this study, the production of stereocomplex PLA formulations (sc-PLA) by compounding and subsequent injection moulding at different mould temperatures was investigated. Several selective nucleating agents were identified and compounded with different poly(L-lactide)/poly(D-lactide) (PLLA/PDLA) ratios on a co-rotating twin screw extruder. The effect of nucleating agents (NA) on the crystallisation behaviour of the compound was systematically investigated by DSC analysis. The crystallisation behaviour of NA-21 (aluminium complex of a phosphoric ester), also in combination with talc, under cooling rates of up to 70 K/min was analysed. The wide-angle X-ray diffraction (WAXD) results showed a complete stereocomplex (sc) crystal formation on all specimens containing NA-21 even at the highest cooling rates. The thermo-mechanical testing of sc-PLA shows a Young’s modulus of approx. 3 GPa, yield stress of 30–40 MPa, elongation of 1%, and a heat deflection temperature (HDT-B) up to 180 °C. Processing sc-PLA exclusively via the processing route of compounding and injection moulding will open new areas of application for PLA at higher temperatures.

Keywords: pla; stereocomplex pla; development high; temperature; injection moulding

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.