LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Ultrasound Treatment on Barrier Changes of Polymers before and after Exposure to Food Simulants

Photo from wikipedia

In this study, we investigated the impact of ultrasound treatment on barrier properties of linear low-density polyethylene (LLDPE) and acrylic/poly(vinylidene chloride) polypropylene (PPAcPVDC)-coated pouches intended for food packaging before and… Click to show full abstract

In this study, we investigated the impact of ultrasound treatment on barrier properties of linear low-density polyethylene (LLDPE) and acrylic/poly(vinylidene chloride) polypropylene (PPAcPVDC)-coated pouches intended for food packaging before and after exposure to food simulants. Packaging pouches were filled with two food simulants, namely ethanol (10% (v/v)) and acetic acid (3% (w/v)), in order to simulate food–packaging interaction and possible compound migration from packaging materials. Samples were subjected to an ultrasound water bath treatment for 5 min, 15 min, and 30 min at 60 °C (±2 °C) and with an amplitude of 100% as an equivalent to the heat-treatment conditions combined with an ultrasound effect. Furthermore, the effect of temperature on the polymer barrier (water vapour and oxygen permeability) properties was tested at 20 °C, 40 °C, and 60 °C. Results showed that PPAcPVDC possessed better properties of water vapour permeability and oxygen permeability properties to LLDPE. Statistical analyses showed a significant (p < 0.001) impact of ultrasound treatment on the overall migration value, regardless of the food simulant used.

Keywords: ultrasound treatment; effect; food; barrier; food simulants; treatment

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.