LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual Modification of Sago Starch via Heat Moisture Treatment and Octenyl Succinylation to Improve Starch Hydrophobicity

Photo by nihar_544 from unsplash

To elucidate the pretreatment of a heat moisture treatment that could increase the DS and hydrophobicity of OSA starch, the effect of the moisture level of the HMT process on… Click to show full abstract

To elucidate the pretreatment of a heat moisture treatment that could increase the DS and hydrophobicity of OSA starch, the effect of the moisture level of the HMT process on the physicochemical properties was investigated. The higher moisture content (MC) in the HMT process led to a decreasing degree of crystallinity and gelatinization enthalpy and also produced surface damage and cracking of the granules. HMT pretreatment with the right moisture content resulted in OSA starch with the maximum DS value and reaction efficiency. Pre-treatment HMT at 25% MC (HMT-25) followed by OSA esterification exhibited the highest DS value (0.0086) and reaction efficiency (35.86%). H25-OSA starch has been shown to have good water resistance (OAC 1.03%, WVP 4.92 × 10−5 g/s m Pa, water contact angle 88.43°), and conversely, has a high cold water solubility (8.44%). Based on FTIR, there were two new peaks at 1729 and 1568 cm−1 of the HMT-OSA starch, which proved that the hydroxyl group of the HMT starch molecule had been substituted with the carbonyl and carboxyl ester groups of OSA.

Keywords: starch; moisture; hmt; heat moisture; moisture treatment

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.