Inspired by the cooperative multi-metallic activation in metalloenzyme catalysis, artificial enzymes as multi-metallic catalysts have been developed for improved kinetics and higher selectivity. Previous models about multi-metallic catalysts, such as… Click to show full abstract
Inspired by the cooperative multi-metallic activation in metalloenzyme catalysis, artificial enzymes as multi-metallic catalysts have been developed for improved kinetics and higher selectivity. Previous models about multi-metallic catalysts, such as cross-linked polymer-supported catalysts, failed to precisely control the number and location of their active sites, leading to low activity and selectivity. In recent years, metallopolymers with metals in the sidechain, also named as sidechain metallopolymers (SMPs), have attracted much attention because of their combination of the catalytic, magnetic, and electronic properties of metals with desirable mechanical and processing properties of polymeric backbones. Living and controlled polymerization techniques provide access to SMPs with precisely controlled structures, for example, controlled degree of polymerization (DP) and molecular weight dispersity (Đ), which may have excellent performance as multi-metallic catalysts in a variety of catalytic reactions. This review will cover the recent advances about SMPs, especially on their synthesis and application in catalysis. These tailor-made SMPs with metallic catalytic centers can precisely control the number and location of their active sites, exhibiting high catalytic efficiency.
               
Click one of the above tabs to view related content.