LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Probing the Dynamic Structural Evolution of End-Functionalized Polybutadiene/Organo-Clay Nanocomposite Gels before and after Yielding by Nonlinear Rheology and 1H Double-Quantum NMR

Photo from wikipedia

Understanding the structural evolution process after the yielding of networks in polymer nanocomposites can provide significant insights into the design and fabrication of high-performance nanocomposites. In this work, using hydroxyl-terminated… Click to show full abstract

Understanding the structural evolution process after the yielding of networks in polymer nanocomposites can provide significant insights into the design and fabrication of high-performance nanocomposites. In this work, using hydroxyl-terminated 1,4-polybutadiene (HTPB)/organo-clay nanocomposite gel as a model, we explored the yielding and recovery process of a polymer network. Linear rheology results revealed the formation of a nanocomposite gel with a house-of-cards structure due to the fully exfoliated 6 to 8 wt% organo-clays. Within this range, nonlinear rheologic experiments were introduced to yield the gel network, and the corresponding recovery processes were monitored. It was found that the main driving force of network reconstruction was the polymer–clay interaction, and the rotation of clay sheets played an important role in arousing stress overshoots. By proton double-quantum (1H DQ) NMR spectroscopy, residual dipolar coupling and its distribution contributed by HTPB segments anchored on clay sheets were extracted to unveil the physical network information. During the yielding process of a house-of-cards network, e.g., 8 wt% organo-clay, nearly one-fourth of physical cross-linking was broken. Based on the rheology and 1H DQ NMR results, a tentative model was proposed to illustrate the yielding and recovery of the network in HTPB/organo-clay nanocomposite gel.

Keywords: network; clay; rheology; clay nanocomposite; organo clay

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.