LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cryogenic Coaxial Printing for 3D Shell/Core Tissue Engineering Scaffold with Polymeric Shell and Drug-Loaded Core

Photo from wikipedia

For decades, coaxial printing has been widely applied in 3D tissue engineering scaffold fabrication. However, there are few reports regarding polymeric materials application in shell production due to fabrication constraints.… Click to show full abstract

For decades, coaxial printing has been widely applied in 3D tissue engineering scaffold fabrication. However, there are few reports regarding polymeric materials application in shell production due to fabrication constraints. In this study, a combination of cryogenic printing and coaxial printing aims to approach the challenge. Polycaprolactone (PCL) and sodium alginate (SA) were selected as the representative shell and core materials to test the feasibility of the coaxial cryogenic printing by optimizing key parameters, including working temperature, air pressure, PCL, and SA concentration. According to the optical and SEM images, the SA core contracts a string inside the PCL shell, illustrating the shell/core structure of the 3D coaxial PCL/SA scaffolds. Besides, the shell/core 3D scaffold possesses a 38.39 MPa Young’s modulus in mechanical tests; the PCL shell could retain at least 8 h in 5 mol/L HCl solution, leading to a fabricated drug-loaded PCL/SA shell/core “responsive” to acidic pH. In summary, coaxial cryogenic printing was developed to fabricate 3D scaffolds with a PCL/SA shell/core scaffold, broadening the material range of coaxial printing and providing promising applications in drug release.

Keywords: shell core; core; scaffold; shell; coaxial printing

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.