LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Three-Dimensional Coordination Framework with a Ferromagnetic Coupled Ni(II)-CrO4 Layer: Synthesis, Structure, and Magnetic Studies

Photo from wikipedia

We report herein on the crystal structure and magnetic studies of a three-dimensional (3D) Ni(II)-chromate coordination polymer, [Ni(CrO4)(bpym)(H2O)]n (1; bpym = 5,5′-bipyrimidin), prepared by self-assembly of Ni(II) and chromate ions… Click to show full abstract

We report herein on the crystal structure and magnetic studies of a three-dimensional (3D) Ni(II)-chromate coordination polymer, [Ni(CrO4)(bpym)(H2O)]n (1; bpym = 5,5′-bipyrimidin), prepared by self-assembly of Ni(II) and chromate ions with a multi-N donor auxiliary ligands, bpym, through hydrothermal processes. The structure of 1 is composed of Ni(II)-CrO4 layers with [Ni3(μ3-CrO4)] triangular motifs, in which the Ni(II) centers are bridged by O′:O′:O′:μ3-CrO42− anions, and the resulting layers are further connected by twisted trans-μ2-N,N′-bpym auxiliary ligands to form a 3D pillar-layered network with an hms topology. The magnetic properties of compound 1 were illustrated by variable field and temperature magnetic susceptibility measurements. The findings reveal that compound 1 shows intralayer ferromagnetic interactions within Ni(II)-CrO4 layers, and furthers the 3D antiferromagnetic ordering in the resulting of interlayer antiferromagnetic couplings with a Néel temperature (TN) of 5.6 K. In addition, compound 1 shows the field-induced metamagnetic behavior at temperature below the TN.

Keywords: structure magnetic; structure; coordination; magnetic studies; three dimensional; studies three

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.