LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Elevated Temperature on the Mechanical Properties of Hybrid Flax-Fiber-Epoxy Composites Incorporating Graphene

Photo from wikipedia

Natural fibers are now becoming widely adopted as reinforcements for polymer matrices to produce biodegradable and renewable composites. These natural composites have mechanical properties acceptable for use in many industrial… Click to show full abstract

Natural fibers are now becoming widely adopted as reinforcements for polymer matrices to produce biodegradable and renewable composites. These natural composites have mechanical properties acceptable for use in many industrial and structural applications under ambient temperatures. However, there is still limited understanding regarding the mechanical performance of natural fiber composites when exposed to in-service elevated temperatures. Moreover, nanoparticle additives are widely utilized in reinforced composites as they can enhance mechanical, thermal, and physical performance. Therefore, this research extensively investigates the interlaminar shear strength (ILSS) and flexural properties of flax fiber composites with graphene at different weight percentages (0%, 0.5%, 1%, and 1.5%) and exposed to in-service elevated temperatures (20, 40, 60, 80, and 100 °C). Mechanical tests were conducted followed by microscopic observations to analyze the interphase between the flax fibers and epoxy resin. The results showed that a significant improvement in flexural strength, modulus, and interlaminar shear strength of the composites was achieved by adding 0.5% of graphene. Increasing the graphene to 1.0% and 1.5% gradually decreased the enhancement in the flexural and ILSS strength. SEM observations showed that voids caused by filler agglomeration were increasingly formed in the natural fiber reinforced composites with the increase in graphene addition.

Keywords: strength; elevated temperature; flax fiber; fiber; influence elevated; mechanical properties

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.