LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Study on the Effect of Matrix Self-Heating on the Thermo-Visco-Plastic Response of Continuous Fiber-Reinforced Polymers under Transverse Tensile Loading

Photo from wikipedia

The recyclability and improved suitability for high-volume production make fiber-reinforced thermoplastic polymers (FRP) attractive alternatives for the current thermoset-based ones. However, while they are more ductile than their thermoset counterparts,… Click to show full abstract

The recyclability and improved suitability for high-volume production make fiber-reinforced thermoplastic polymers (FRP) attractive alternatives for the current thermoset-based ones. However, while they are more ductile than their thermoset counterparts, their behavior is also more susceptible to environmental conditions such as humidity, temperature, and strain rate. The latter can trigger self-heating and thermal softening effects. The role of matrix self-heating in FRP subjected to transverse loading is investigated using micromechanical modeling. Particularly, the effect of self-heating, strain rate and conductivity of the fiber-matrix interface is illustrated. It is shown that local heating of the matrix is dominant for the homogenized behavior of the material. Although the global homogenized temperature increase is limited, local thermal softening can induce premature failure. It is shown that the effect of thermal softening can be more prominent with increasing volume fraction, increasing strain rate, and lower interface conductivity.

Keywords: fiber reinforced; strain rate; effect; self heating; matrix self

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.