The diffusion of small molecules or ions within polymeric materials is critical for their applications, such as polymer electrolytes. Cross-linking has been one of the common strategies to modulate solute… Click to show full abstract
The diffusion of small molecules or ions within polymeric materials is critical for their applications, such as polymer electrolytes. Cross-linking has been one of the common strategies to modulate solute diffusivity and a polymer’s mechanical properties. However, various studies have shown different effects of cross-linking on altering the solute transports. Here, we utilized coarse-grained molecular dynamics simulation to systematically analyze the effects of cross-linking and polymer rigidity of solute diffusive behaviors. Above the glass transition temperature Tg, the solute diffusion followed the Vogel–Tammann–Fulcher (VTF) equation, D = D0 e−Ea/R(T−T0). Other than the conventional compensation relation between the activation energy Ea and the pre-exponential factor D0, we also identified a correlation between Ea and Vogel temperature T0. We further characterized an empirical relation between T0 and cross-linking density. Integrating the newly identified correlations among the VTF parameters, we formulated a relation between solute diffusion and the cross-linking density. The combined results proposed the criteria for the optimal solute diffusivity in cross-linked polymers, providing generic guidance for novel polymer electrolyte design.
               
Click one of the above tabs to view related content.