LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magneto-Dielectric Effects in Polyurethane Sponge Modified with Carbonyl Iron for Applications in Low-Cost Magnetic Sensors

Photo from wikipedia

In this study, magnetizable polyurethane sponges (MSs) were obtained from commercial absorbent polyurethane sponges (PSs) doped with carbonyl iron microparticles (CIPs). Based on MSs, we manufactured cylindrical capacitors (CCs). The… Click to show full abstract

In this study, magnetizable polyurethane sponges (MSs) were obtained from commercial absorbent polyurethane sponges (PSs) doped with carbonyl iron microparticles (CIPs). Based on MSs, we manufactured cylindrical capacitors (CCs). The CCs were subjected to both a magnetic field and an alternating electric field, with a frequency of f=1 kHz. Using an RLC bridge, we measured the series electric capacitance, Cs, and the tangent of the loss angle, Ds. From the functions Cs=Cs(δ)CCs and Ds=Ds(δ)CCs, we extracted the components of the complex dielectric permittivity. It was found that the CIPs embedded in the MS matrix aggregated, leading to magneto-dielectric effects such as the enhancement of the complex dielectric permittivity components when applying the magnetic field as a principal effect and the enhancement of the electric capacitance and time constant of the capacitors as a secondary effect. The obtained results represent landmarks in the realization of low-cost magnetic field sensors, deformation and mechanical stress transducers in the robotics industry, etc.

Keywords: carbonyl iron; cost magnetic; low cost; magneto dielectric; dielectric effects

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.