LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Encapsulation of Blackberry Phenolics and Volatiles Using Apple Fibers and Disaccharides

The objective of this study was to determine the effect of disaccharides on the encapsulation of the phenolics and volatiles of blackberry juice with the use of apple fiber. For… Click to show full abstract

The objective of this study was to determine the effect of disaccharides on the encapsulation of the phenolics and volatiles of blackberry juice with the use of apple fiber. For this purpose, apple fiber/blackberry microparticles were prepared as the control, as well as microparticles additionally containing disaccharides, i.e., sucrose or trehalose. Fiber:disaccharide ratios were 1:0.5, 1:1, and 1:2. Formulated microparticles were characterized for total phenolics, proanthocyanidins, individual phenolics, antioxidant activity, flavor profiles, and color parameters. Both applied disaccharides affected the encapsulation of phenolics and volatiles by the apple fibers. Control microparticles had a higher content of phenolics than microparticles with disaccharides. Comparing disaccharides, the microparticles with trehalose had a higher content of phenolics than the ones containing sucrose. The amount of proanthocyanidins in the control microparticles was 47.81 mg PB2/100 g; in trehalose, the microparticles ranged from 39.88 to 42.99 mg PB2/100 g, and in sucrose, the microparticles ranged from 12.98 to 26.42 mg PB2/100 g, depending on the fiber:disaccharide ratio. Cyanidin-3-glucoside was the dominant anthocyanin. Its amount in the control microparticles was 151.97 mg/100 g, while in the trehalose microparticles, this ranged from 111.97 to 142.56 mg /100 g and in sucrose microparticles, from 100.28 to 138.74 mg /100 g. On the other hand, microparticles with disaccharides had a higher content of volatiles than the control microparticles. Trehalose microparticles had a higher content of volatiles than sucrose ones. These results show that the formulation of microparticles, i.e., the selection of carriers, had an important role in the final quality of the encapsulates.

Keywords: higher content; control microparticles; apple; encapsulation; apple fibers; phenolics volatiles

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.