LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Water Sorption by Polyheteroarylenes

Photo by a2eorigins from unsplash

The sorption–diffusion characteristics of rigid-chain glassy polymers based on polyheteroarylenes (PHAs) have been studied in a wide interval of relative humidity and temperatures of thermal treatment of the polymer sorbents.… Click to show full abstract

The sorption–diffusion characteristics of rigid-chain glassy polymers based on polyheteroarylenes (PHAs) have been studied in a wide interval of relative humidity and temperatures of thermal treatment of the polymer sorbents. Experimental data on water vapor sorption for polynaphthoyleneimidobenzimidazole (PNIB) and its copolymers with different chemical nature have been obtained. Water diffusion coefficients have been calculated, and parameters of their concentration and temperature dependences have been determined. It was found that water molecules sorbed by PNIB and its copolymers are strongly bounded. Water mobile and cluster states depend on the structure of macromolecules and thermal prehistory of polymer sorbents. It is shown that the translational coefficients of water diffusion for all PHAs are in the range from 10−9 to 10−8 cm2/s. The diffusion coefficients also increase slightly with temperature increasing, and their general dependence on temperature is satisfactorily described by the Arrhenius equation. The average activation energy of water diffusion varies from 24.3 to 25.9 kJ/mol. The hydrate numbers of rigid-chain PHAs functional groups have been determined. The above-mentioned results allow us to predict the sorption properties of heterocyclic macromolecular sorbents with complex chain architecture.

Keywords: sorption; sorption polyheteroarylenes; water diffusion; water; water sorption

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.