Polypropylene (PP), as a general thermoplastic polymer, is broadly used in different fields. However, the high flammability, melt dripping and poor mechanical properties of PP are a constraint to the… Click to show full abstract
Polypropylene (PP), as a general thermoplastic polymer, is broadly used in different fields. However, the high flammability, melt dripping and poor mechanical properties of PP are a constraint to the expansion of its applications. In this paper, PP composites containing a combination of a phenethyl-bridged DOPO derivative (PN-DOPO) and organic montmorillonite (OMMT) were prepared via melt blending. The synergistic effects of PN-DOPO and OMMT on the flame retardancy, thermal stability and mechanical properties of PP composites were investigated systematically. The results showed that 20 wt% addition of PN-DOPO with OMMT improved the flame retardancy of PP composites. In particular, the introduction of 17 wt% PN-DOPO and 3 wt% OMMT increased the LOI values of the PP matrix from 17.2% to 23.6%, and the sample reached the V-0 level and reduced the heat release rate and total heat release. TGA indicated that OMMT could improve the thermal stability of the PP/PN-DOPO blends and promote the char residues of PP systems. Rheological behaviour showed a higher storage modulus, loss modulus and complex viscosity of PP/PN-DOPO/OMMT composites, suggesting a more effective network structure. In addition, the tensile strength, flexural properties and impact strength of the PP/PN-DOPO/OMMT composites actually increased for a good dispersion effect. Combined with the char layer analysis, the introduction of OMMT promoted more continuous and compact structural layers containing an aluminium–silicon barrier and phosphorus-containing carbonaceous char in the condensed phase. OMMT can improve the flame retardancy, thermal stability and mechanical properties of PP, and, thus, PN-DOPO/OMMT blends can serve as an efficient synergistic system for flame-retarded PP composites.
               
Click one of the above tabs to view related content.