LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Removal of a Textile Dye from an Aqueous Solution Using a Biocomposite Adsorbent

Photo by ethanbodnar from unsplash

The adsorption mechanisms of methylene blue (MB) onto olive waste (residue) treated with KOH (OR-KOH) and onto an OR-KOH and PEG–silica gel composite (OR-KOH/PEG-SG) at various temperatures were investigated using… Click to show full abstract

The adsorption mechanisms of methylene blue (MB) onto olive waste (residue) treated with KOH (OR-KOH) and onto an OR-KOH and PEG–silica gel composite (OR-KOH/PEG-SG) at various temperatures were investigated using a combination of experimental analysis and Monte Carlo ab-initio simulations. The effects of adsorption process variables such as pH, temperature, and starting adsorbate concentration were investigated. The experimental data were fitted to Langmuir and Freundlich models. The maximum adsorption capacities of MB onto OR-KOH and OR-KOH/PEG-SG adsorbents reached values of 504.9 mg/g and 161.44 mg/g, respectively. The experimental FT-IR spectra indicated that electrostatic attraction and hydrogen bond formation were critical for MB adsorption onto the adsorbents generated from olive waste. The energetic analyses performed using Monte Carlo atomistic simulations explained the experimental results of a differential affinity for the investigated adsorbents and confirmed the nature of the interactions between methylene blue and the adsorbents to be van der Waals electrostatic forces.

Keywords: adsorption; koh peg; removal textile; textile dye; dye aqueous; koh

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.