The natural nacre has a regular ordered layered structure of calcium carbonate tablets and ion crosslinking proteins stacked alternately, showing outstanding mechanical properties. Inspired by nacre, we fabricated different divalent… Click to show full abstract
The natural nacre has a regular ordered layered structure of calcium carbonate tablets and ion crosslinking proteins stacked alternately, showing outstanding mechanical properties. Inspired by nacre, we fabricated different divalent metal cation-crosslinked montmorillonite-alginate hybrid films (MMT-ALG-X2+; X2+ = Cu2+, Cd2+, Ba2+, Ca2+, Ni2+, Co2+ or Mn2+). The effect of ionic crosslinking strength and hydrogen bond interaction on the mechanical properties of the nacre-mimetics was studied. With the cations affinities with ALG being increased (Mn2+ < Co2+ = Ni2+ < Ca2+ < Ba2+ < Cd2+ < Cu2+), the tensile strength of nacre-mimetics showed two opposite influence trends: Weak ionic crosslinking (Mn2+, Co2+, Ni2+ and Ca2+) can synergize with hydrogen bonds to greatly increase the tensile properties of the sample; Strong ionic crosslinking (Ba2+, Cd2+, Cu2+) and hydrogen bonding form a competitive relationship, resulting in a rapid decrease in mechanical properties. Mn2+ crosslinking generates optimal strength of 288.0 ± 15.2 MPa with an ultimate strain of 5.35 ± 0.6%, obviously superior to natural nacre (135 MPa and 2%). These excellent mechanical properties arise from the optimum synergy of ion crosslinking and interfacial hydrogen bonds between crosslinked ALG and MMT nanosheets. In addition, these metal ion-crosslinked composite films show different colors, high visible transparency, and excellent UV shielding properties.
               
Click one of the above tabs to view related content.