LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Vitro Biocompatibility of a Novel Semi-Rigid Shell Barrier System: As a New Application for Guided Bone Regeneration

Photo from wikipedia

This study evaluated the in vitro biocompatibility of a novel, semi-rigid shell barrier system for guided bone regeneration (GBR) based on polycaprolactone and biphasic calcium phosphate membranes and consisting of… Click to show full abstract

This study evaluated the in vitro biocompatibility of a novel, semi-rigid shell barrier system for guided bone regeneration (GBR) based on polycaprolactone and biphasic calcium phosphate membranes and consisting of a semi-rigid shell (SR) and two semi-resorbable barrier membranes, i.e., a buffered (BF) and an airdried (AD) membrane. In vitro biocompatibility, cell cytotoxicity, cell proliferation and differentiation were evaluated with osteoblast (MC3T3-E1) and fibroblast (L929) cells compared to the d-PTFE membrane (Cytoplast®, CP). The osteoblasts and fibroblasts were well attached and proliferated on all materials from days 1, 3, and 7 without cell cytotoxicity. All groups showed that osteoblast and fibroblast cell proliferation increased from day 1 to day 14–17 and decreased on day 21. On day 21, the CP membrane presented significantly higher osteoblast cell numbers than the BF membrane and the SR shell (p = 0.000). The CP membrane presented a significantly higher amount of fibroblast cells than the other groups (p = 0.000). The SR shell and the BF membrane demonstrated higher osteoblast cell differentiation markers including ALP activity, osteocalcin, and mineral secretion than the CP and the AD membrane. The semi-rigid shell barrier system demonstrated good in vitro biocompatibility and supported osteogenic cell proliferation and differentiation better than the d-PTFE membrane.

Keywords: vitro biocompatibility; semi rigid; rigid shell; membrane; shell

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.