LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of Electrospun Xylan-g-PMMA/TiO2 Nanofibers and Photocatalytic Degradation of Methylene Blue

Herein, xylan-g-PMMA was synthesized by grafting poly(methyl methacrylate) (PMMA) onto xylan and characterized by FT-IR and HSQC NMR spectroscopies, and the xylan-g-PMMA/TiO2 solution was used to electrospun nanofibers at the… Click to show full abstract

Herein, xylan-g-PMMA was synthesized by grafting poly(methyl methacrylate) (PMMA) onto xylan and characterized by FT-IR and HSQC NMR spectroscopies, and the xylan-g-PMMA/TiO2 solution was used to electrospun nanofibers at the voltage of 15 Kv, which was the first time employing xylan to electrospun nanofibers. Moreover, the electrospinning operating parameters were optimized by assessing the electrospinning process and the morphology of electrospun fibers, as follows: the mixed solvent of DMF and chloroform in a volume ratio of 5:1, an anhydroxylose unit (AXU)/MMA molar ratio lower than 1:2, the flow speed of 0.00565–0.02260 mL/min, and a receiving distance of 10–15 cm. Diameters of the electrospun fibers increased with increasing DMF content in the used solvent mixture, MMA dosage, and receiving distance. TiO2 nanoparticles were successfully dispersed in electrospun xylan-g-PMMA nanofibers and characterized by scanning electron microscopy, energy dispersive X-ray diffraction spectrum, and X-ray photoelectron spectroscopy, and their application for methylene blue (MB) degradation presented above 80% photocatalytic efficiency, showing the good potential in water treatment.

Keywords: xylan pmma; electrospun xylan; methylene blue; xylan; pmma tio2

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.