Welan gum is one of the most promising polymers used in polymer flooding for enhancing oil recovery, due to its excellent temperature resistance and salt-tolerance performance. However, welan gum, as… Click to show full abstract
Welan gum is one of the most promising polymers used in polymer flooding for enhancing oil recovery, due to its excellent temperature resistance and salt-tolerance performance. However, welan gum, as a polymer with higher molecular weight, can be adsorbed and detained in the pore throat of the reservoir, which is characterized by a smaller size. Montmorillonite, a kind of clay mineral with high content in reservoir rocks, has strong adsorption capacity. Therefore, the adsorption behavior of welan gum on montmorillonite, as well as its influencing factors, are studied in this paper. The results show that the adsorption capacity is 2.07 mg/g. The adsorption capacity decreased with the increase in temperature. Both acidic and alkaline conditions reduced the adsorption capacity. The existence of inorganic salt affected the adsorption capacity. In addition, the higher the cation value, the lower the adsorption capacity. The characterization tests showed that the adsorption of welan gum on montmorillonite was characterized by physical adsorption and surface adsorption, indicating that there were no changes in the internal structure of montmorillonite. This study provides feasible methods to reduce the amount of welan gum adsorbed on montmorillonite, which is of great significance for reducing the permeability damage caused by welan gum adsorption and promoting the application of welan gum in polymer flooding for enhancing oil recovery.
               
Click one of the above tabs to view related content.