LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of Wearable Transistor with All-Graphene Electrodes via Hot Pressing

Photo from wikipedia

Textile electronics are ideal for novel electronic devices owing to their flexibility, light weight, and wearability. In this work, wearable organic field-effect transistors (OFETs) with all-graphene electrodes, fabricated using hot… Click to show full abstract

Textile electronics are ideal for novel electronic devices owing to their flexibility, light weight, and wearability. In this work, wearable organic field-effect transistors (OFETs) with all-graphene electrodes, fabricated using hot pressing, are described. First, highly conductive and flexible electrodes consisting of a cotton textile substrate and electrochemically exfoliated graphene (EEG) were prepared via hot pressing. The EEG/textile electrodes exhibited a low sheet resistance of 1.3 Ω sq−1 and high flexibility; these were used as gate electrodes in the wearable OFETs. In addition, spray-coated EEG was also used as the source/drain (S/D) electrodes of the wearable OFETs, which recorded a sheet resistance of 14.8 Ω sq−1 after hot pressing. The wearable OFETs exhibited stable electrical performance, a field-effect mobility of 13.8 cm2 V−1 s−1, and an on–off current ratio of ~103 during 1000 cycles of bending. Consequently, the fabrication method for wearable transistors developed using textiles and hot-pressed graphene electrodes has potential applications in next-generation wearable devices.

Keywords: fabrication wearable; via hot; wearable ofets; hot pressing; graphene electrodes

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.