LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Mung Bean (Vigna radiata) Protein Isolate on Rheological, Textural, and Structural Properties of Native Corn Starch

Photo from wikipedia

It is critical to understand the starch–protein interactions in food systems to obtain products with desired functional properties. This study aimed to investigate the influence of mung bean protein isolate… Click to show full abstract

It is critical to understand the starch–protein interactions in food systems to obtain products with desired functional properties. This study aimed to investigate the influence of mung bean protein isolate (MBPI) on the rheological, textural, and structural properties of native corn starch (NCS) and their possible interactions during gelatinization. The dynamic rheological measurements showed a decrease in the storage modulus (G’) and loss modulus (G”) and an increase in the loss factor (tan δ), by adding MBPI to NCS gels. In addition, the textural properties represented a reduction in firmness after the addition of MBPI. The Scanning electron microscope (SEM) images of the freeze-dried NCS/MBPI gels confirmed that the NCS gel became softer by incorporating the MBPI. Moreover, X-ray diffraction (XRD) patterns showed a peak at 17.4°, and the relative crystallinity decreased with increasing MBPI concentrations. The turbidity determination after 120 h refrigerated storage showed that the addition of MBPI could reduce the retrogradation of NCS gels by interacting with leached amylose. Additionally, the syneresis of NCS/MBPI gels decreased at 14 days of refrigerated storage from 60.53 to 47.87%.

Keywords: rheological textural; protein isolate; starch; mung bean; mbpi

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.