LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Permeable Sulfonated Graphene-Based Composite Membranes for Electrochemically Enhanced Nanofiltration

Photo from wikipedia

A sulfophenyl-functionalized reduced graphene oxide (SrGO) membrane is prepared. The SrGO membranes have a high charge density in water and could provide many atomically smooth nanochannels, because of their strong… Click to show full abstract

A sulfophenyl-functionalized reduced graphene oxide (SrGO) membrane is prepared. The SrGO membranes have a high charge density in water and could provide many atomically smooth nanochannels, because of their strong ionized-SO3H groups and low oxygen content. Therefore, the SrGO membranes have an excellent performance in terms of high permeance and high rejection ability. The permeance of SrGO membranes could be up to 118.2 L m−2 h−1 bar−1, which is 7.6 times higher than that of GO membrane (15.5 L m−2 h−1 bar−1). Benefiting from their good electrical conductivity, the SrGO membranes could also function as an electrode and demonstrate a significantly increased rejection toward negatively charged molecules and positively charged heavy metal ions such as Cu2+, Cr3+ and Cd2+, if given an appropriate negative potential. The rejection ratios of these metal ions can be increased from <20% at 0 V to >99% at 2.0 V. This is attributed to the enhanced electrostatic repulsion between the SrGO membrane and the like-charged molecules, and the increased electrostatic adsorption and electrochemical reduction in these heavy metal ions on the membranes. This study is expected to contribute to efficient water treatment and the advance of graphene-based membranes.

Keywords: graphene; metal ions; highly permeable; srgo membranes; graphene based

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.