LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Reinforcing Effect of Waste Polyester Fiber on Recycled Polyethylene

Photo by wizwow from unsplash

To improve the performance and application value of recycled plastics, filling modification has been widely used in waste plastic reinforcement. In this study, recycled polyethylene (RPE) was reinforced via extrusion… Click to show full abstract

To improve the performance and application value of recycled plastics, filling modification has been widely used in waste plastic reinforcement. In this study, recycled polyethylene (RPE) was reinforced via extrusion blending using waste polyester fiber (WPF) from a waste silk wadding quilt as a reinforcer. The effects of the amount of WPF on the mechanical properties, the thermal stability of RPE and the microstructure of the RPE/WPF composite were studied. The result shows that extrusion blending can evenly disperse WPF in RPE matrix and that WPF can clearly improve the tensile strength, flexural modulus, storage modulus and thermal stability of RPE. The tensile strength and flexural modulus almost achieved the maximum when the addition of WPF was 20 wt%. The storage modulus under this condition is also higher than that of other samples. This study provides a cheap and effective reinforcement method for waste plastics as well as a new idea for the reuse of WPF, which is of great significance to the reuse of waste and environmental protection. However, how to enhance the interface adhesion between WPF and RPE to further improve the enhancement effect needs further research.

Keywords: waste; rpe; recycled polyethylene; waste polyester; polyester fiber

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.