LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational Modeling of Polymer Matrix Based Textile Composites

Photo from wikipedia

A simple approach to the multiscale analysis of a plain weave reinforced composite made of basalt fabrics bonded to a high performance epoxy resin L285 Havel is presented. This requires… Click to show full abstract

A simple approach to the multiscale analysis of a plain weave reinforced composite made of basalt fabrics bonded to a high performance epoxy resin L285 Havel is presented. This requires a thorough experimental program to be performed at the level of individual constituents as well as formulation of an efficient and reliable computational scheme. The rate-dependent behavior of the polymer matrix is examined first providing sufficient data needed in the calibration step of the generalized Leonov model, which in turn is adopted in numerical simulations. Missing elastic properties of basalt fibers are derived next using nanoindentation. A series of numerical tests is carried out at the level of yarns to promote the ability of a suitably modified Mori–Tanaka micromechanical model to accurately describe the nonlinear viscoelastic response of unidirectional fibrous composites. The efficiency of the Mori–Tanaka method is then exploited in the formulation of a coupled two scale computational scheme, while at the level of textile ply the finite element computational homogenization is assumed, the two-point averaging format of the Mori–Tanaka method is applied at the level of yarn to serve as a stress updater in place of another finite element model representing the yarn microstructure as typical of FE2 based multiscale approach. Several numerical simulations are presented to support the proposed modeling methodology.

Keywords: textile; polymer matrix; polymer; modeling polymer; mori tanaka; computational modeling

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.