LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Whey Protein Edible Coating Containing Fish Gelatin Hydrolysates on Physicochemical, Microbial, and Sensory Properties of Chicken Breast Fillets

Photo by tangzhengtao from unsplash

This study aims to research the impact of coatings containing whey protein (WP), fish gelatin hydrolysates (FGH), and both compounds together (WP + FGH) on the shelf-life of chicken breast… Click to show full abstract

This study aims to research the impact of coatings containing whey protein (WP), fish gelatin hydrolysates (FGH), and both compounds together (WP + FGH) on the shelf-life of chicken breast fillets over the course of 16 days of cold storage (4 °C, 4-day intervals), as assessed by their physicochemical, microbiological, and sensory properties. Overall, cooking loss, pH value, total volatile base nitrogen, free fatty acids, peroxide value, and thiobarbituric acid reactive substances increased with storage time in all samples. WP + FGH coated samples had significantly lower variation in all these parameters over the time of storage compared to other coated samples (WP and FGH), while these parameters increased greatly in control (uncoated) samples. WP + FGH coating also resulted in reduced bacterial counts of total mesophilic, aerobic psychrotrophic, and lactic acid bacteria compared to other coated and uncoated samples. The sensory evaluation revealed no differences in the panelists’ overall acceptance at day 0 of storage between samples. The samples were considered “non-acceptable” by day 8 of storage; however, WP + FGH coated samples maintained an overall higher acceptability score for the sensory attributes evaluated by the panelists. Overall, this study shows the potential of WP + FGH coatings for prolonging the shelf-life of chicken breast fillets.

Keywords: whey protein; breast fillets; fish gelatin; chicken breast; storage; gelatin hydrolysates

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.