LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and Characterization of LLDPE Blends with Different UHMWPE Concentrations Obtained by Hot Pressing

Photo by joshuanewton from unsplash

To modify its characteristics, expand its applicability, and, in some cases, its processability, new blends using ultra-high-molecular-weight polyethylene (UHMWPE) have been developed. In this study, three different formulations of linear… Click to show full abstract

To modify its characteristics, expand its applicability, and, in some cases, its processability, new blends using ultra-high-molecular-weight polyethylene (UHMWPE) have been developed. In this study, three different formulations of linear low-density polyethylene (LLDPE) and UHMWPE blends were prepared with 15, 30, and 45% (% w/w) UHMWPE in the LLDPE matrix. All mixtures were prepared by hot pressing and were immersed in water for one hour afterwards at a controlled temperature of 90 °C to relieve the internal stresses that developed during the forming process. The thermal characterization showed that the blends showed endothermic peaks with different melting temperatures, which may be the result of co-crystallization without mixing between the polymers during the forming process. The mechanical characteristics presented are typical of a ductile material, but with the increase in the percentage of UHMWPE, there was a decrease in the ductility of the blends, as the elongation at rupture of the blends was higher than that of the pure components. The morphologies observed by SEM indicate that there were two phases in the blends. This is the result of the system’s immiscibility due to the mode of preparation of the blends, wherein the two polymers may not have mixed intimately, confirming the results found with the thermal analyses.

Keywords: pressing; development characterization; hot pressing; characterization lldpe; lldpe blends

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.