LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification and Characterization of Fibronectin-Binding Peptides in Gelatin

Photo from wikipedia

Collagen and fibronectin (FN) are important components in the extracellular matrix (ECM). Collagen-FN binding belongs to protein-protein interaction and plays a key role in regulating cell behaviors. In this study,… Click to show full abstract

Collagen and fibronectin (FN) are important components in the extracellular matrix (ECM). Collagen-FN binding belongs to protein-protein interaction and plays a key role in regulating cell behaviors. In this study, FN-binding peptides were isolated from gelatin (degraded collagen) using affinity chromatography, and the amino acid sequences were determined using HPLC-MS. The results indicated that all FN-binding peptides contained GPAG or GPPG. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and dual-polarization interferometry (DPI) were used to analyze the effects of hydroxylation polypeptide on FN binding activity. DPI analysis indicated that peptides with molecular weight (MW) between 2 kDa and 30 kDa showed higher FN-binding activity, indicating MW range played an important role in the interaction between FN and peptides. Finally, two peptides with similar sequences except for hydroxylation of prolines were synthesized. The FN-binding properties of the synthesized peptides were determined by MALDI-TOF MS. For peptide, GAPGADGP*AGAPGTP*GPQGIAGQR, hydroxylation of P8 and P15 is necessary for FN-binding. For peptide, GPPGPMGPPGLAGPPGESGR, the FN-binding process is independent of proline hydroxylation. Thus, FN-binding properties are proline-hydroxylation dependent.

Keywords: characterization fibronectin; fibronectin binding; hydroxylation; identification characterization; binding peptides

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.