LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Aggregate Size on the Axial Compressive Behavior of FRP-Confined Coral Aggregate Concrete

Photo by kellysikkema from unsplash

Using locally available raw materials for preparing concrete, such as coral reefs, seawater, and sea sand, is conducive to compensating for the shortage of construction materials used on remote islands.… Click to show full abstract

Using locally available raw materials for preparing concrete, such as coral reefs, seawater, and sea sand, is conducive to compensating for the shortage of construction materials used on remote islands. Jacketing fiber-reinforced polymer (FRP), as passive confinement, is a practical approach to enhance the strength, ductility, and durability of such coral aggregate concrete (CAC). Rational and economical CAC structural design requires understanding the interactions between the CAC fracture process and FRP confinement. The coral aggregate size is the critical parameter of their interaction since it affects the crack propagation of CAC and FRP confinement efficiency. This study conducted axial compression tests on FRP-confined CAC cylinders with varying coral aggregate sizes and FRP confinement levels. The test results indicate that the coral aggregate sizes affected the unconfined CAC strength. In addition, the dilation behavior of FRP-confined CAC varied with aggregate sizes, showing that CAC with smaller coral aggregate featured a more uniform hoop strain distribution and larger FRP rupture strain. These coupling effects are epitomized by the variation in the transition stress on the stress–strain curve, which makes the existing stress–strain models not applicable for FRP-confined CAC. A modified stress–strain model is subsequently proposed. Finally, the practical and environmental implications of the present study are discussed.

Keywords: strain; aggregate concrete; frp confined; coral aggregate

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.