LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Functional Glass–Ceramic Coatings on Titanium Substrates from Glass Powders and Reactive Silicone Binders

Photo from wikipedia

‘Silica-defective glasses’, combined with a silicone binder, have been already shown as a promising solution for the manufacturing of glass–ceramics with complex geometries. A fundamental advantage is the fact that,… Click to show full abstract

‘Silica-defective glasses’, combined with a silicone binder, have been already shown as a promising solution for the manufacturing of glass–ceramics with complex geometries. A fundamental advantage is the fact that, after holding glass powders together from room temperature up to the firing temperature, the binder does not completely disappear. More precisely, it converts into silica when heat-treated in air. A specified ‘target’ glass–ceramic formulation results from the interaction between glass powders and the binder-derived silica. The present paper is dedicated to the extension of the approach to the coating of titanium substrates (to be used for dental and orthopedic applications), with a bioactive wollastonite–diopside glass–ceramic layer, by the simple airbrushing of suspensions of glass powders in alcoholic silicone solutions. The interaction between glass and silica from the decomposition of the binder led to crack-free glass–ceramic coatings, upon firing in air; in argon, the glass/silicone mixtures yielded novel composite coatings, embedding pyrolytic carbon. The latter phase enabled the absorption of infrared radiation from the coating, which is useful for disinfection purposes.

Keywords: titanium substrates; glass powders; glass ceramic; ceramic coatings; glass

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.