LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of a Translucent Material Produced from Paulownia tomentosa Using Peracetic Acid Delignification and Resin Infiltration

Photo by sharonmccutcheon from unsplash

Paulownia tomentosa, a tree species that allows for efficient production of translucent wood, was selected as an experimental wood species in this study, and a two-step process of delignification and… Click to show full abstract

Paulownia tomentosa, a tree species that allows for efficient production of translucent wood, was selected as an experimental wood species in this study, and a two-step process of delignification and polymer impregnation was performed. For delignification, 2–4 mm thick specimens were immersed in peracetic acid for 8 h. The delignified-wood specimens were impregnated using epoxy, a commercial transparent polymer. To identify the characteristics of the resulting translucent wood, the transmittance and haze of each type of wood section (cross- and tangential) were measured, while bending strength was measured using a universal testing machine. The translucent wood varied in properties according to the wood section, and the total transmittance and haze were 88.0% and 78.5% for the tangential section and 91.3% and 96.2% for the cross-section, respectively. For the bending strength, untreated wood showed values of approximately 4613.5 MPa modulus of elasticity (MOE), while the epoxy impregnation to improve the strength of the wood had increased the MOE up to approximately 6089.9 MPa, respectively. A comparative analysis was performed in this study with respect to the substitution of balsa, which is used widely in the production of translucent wood. The results are anticipated to serve as baseline data for the functionalization of translucent wood.

Keywords: peracetic acid; delignification; paulownia tomentosa; translucent wood; wood

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.