LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PVP/CS/Phyllanthus emblica Nanofiber Membranes for Dry Facial Masks: Manufacturing Process and Evaluations

Photo by kellysikkema from unsplash

In the wake of increasing demands on skin health, we propose simple, natural, and safe dry facial masks that restrict melanin synthesis. Phyllanthus emblica (P. emblica) is made into powders… Click to show full abstract

In the wake of increasing demands on skin health, we propose simple, natural, and safe dry facial masks that restrict melanin synthesis. Phyllanthus emblica (P. emblica) is made into powders via a low-temperature extraction and freeze-drying process to serve as a natural agent. Next, it is added to mixtures containing Polyvinylpyrrolidone (PVP) and Chitosan (CS), after which the blends are electrospun into PVP/CS/P. emblica nanofiber membrane dry facial masks using the electrospinning technique. The dry facial masks are evaluated using the calibration analysis method, extraction rate test, scanning electron microscopy (SEM), release rate test, tyrosinase inhibition assay, biocompatibility test, and anti-inflammatory capacity test. Test results indicate that when the electrospinning mixture contains 29.0% P. emblica, the nanofibers have a diameter of ≤214.27 ± 74.51 nm and a water contact angle of 77.25 ± 2.21. P. emblica is completely released in twenty minutes, and the tyrosinase inhibition rate reaches 99.53 ± 0.45% and the cell activity ≥82.60 ± 1.30%. Moreover, the anti-inflammatory capacity test results suggest that dry facial masks confine inflammatory factors. PVP/CS/P. emblica nanofiber dry facial masks demonstrate excellent tyrosinase inhibition and are hydrophilic, biocompatible, and inflammation-free. The dry facial masks are a suitable material that is worthwhile exploring and applying to the cosmetic field.

Keywords: phyllanthus emblica; dry facial; facial masks; emblica nanofiber; test

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.