LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exact Enumeration Approach to Estimate the Theta Temperature of Interacting Self-Avoiding Walks on the Simple Cubic Lattice

Photo from wikipedia

We compute the exact root-mean-square end-to-end distance of the interacting self-avoiding walk (ISAW) up to 27 steps on the simple cubic lattice. These data are used to construct a fixed… Click to show full abstract

We compute the exact root-mean-square end-to-end distance of the interacting self-avoiding walk (ISAW) up to 27 steps on the simple cubic lattice. These data are used to construct a fixed point equation to estimate the theta temperature of the collapse transition of the ISAW. With the Bulirsch–Stoer extrapolation method, we obtain accurate results that can be compared with large-scale long-chain simulations. The free parameter ω in extrapolation is precisely determined using a parity property of the ISAW. The systematic improvement of this approach is feasible by adopting the combination of exact enumeration and multicanonical simulations.

Keywords: theta temperature; simple cubic; self avoiding; estimate theta; cubic lattice; interacting self

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.