LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Construction of Photoinitiator Functionalized Spherical Nanoparticles Enabling Favorable Photoinitiating Activity and Migration Resistance for 3D Printing

A straight-forward method was exploited to construct a multifunctional hybrid photoinitiator by supporting 2-hydroxy-2-methylpropiophenone (HMPP) onto a nano-silica surface through a chemical reaction between silica and HMPP by using (3-isocyanatopropyl)-triethoxysilane… Click to show full abstract

A straight-forward method was exploited to construct a multifunctional hybrid photoinitiator by supporting 2-hydroxy-2-methylpropiophenone (HMPP) onto a nano-silica surface through a chemical reaction between silica and HMPP by using (3-isocyanatopropyl)-triethoxysilane (IPTS) as a bridge, and this was noted as silica-s-HMPP. The novel hybrid-photoinitiator can not only initiate the photopolymerization but also prominently improve the dispersion of nanoparticles in the polyurethane acrylate matrix and enhance the filler-elastomer interfacial interaction, which results in excellent mechanical properties of UV-cured nanocomposites. Furthermore, the amount of extractable residual photoinitiators in the UV-cured system of silica-s-HPMM shows a significant decrease compared with the original HPMM system. Since endowing the silica nanoparticle with photo-initiated performance and fairly lower mobility, it may lead to a reduction in environmental contamination compared to traditional photoinitators. In addition, the hybrid-photoinitiator gives rise to an accurate resolution object with a complex construction and favorable surface morphology, indicating that multifunctional nanosilica particles can be applied in stereolithographic 3D printing.

Keywords: photoinitiator functionalized; hybrid photoinitiator; construction photoinitiator; functionalized spherical; construction; photoinitiator

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.