LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Blending PLA with Polyesters Based on 2,5-Furan Dicarboxylic Acid: Evaluation of Physicochemical and Nanomechanical Properties

Photo by maeligpesco from unsplash

Poly(lactic acid) (PLA) is a readily available, compostable biobased polyester with high strength and toughness, and it is excellent for 3D printing applications. Polymer blending is an economic and easy… Click to show full abstract

Poly(lactic acid) (PLA) is a readily available, compostable biobased polyester with high strength and toughness, and it is excellent for 3D printing applications. Polymer blending is an economic and easy way to improve its properties, such as its slow degradation and crystallization rates and its small elongation, and thus, make it more versatile. In this work, the effects of different 2,5-furan dicarboxylic acid (FDCA)-based polyesters on the physicochemical and mechanical properties of PLA were studied. Poly(butylene furan 2,5-dicarboxylate) (PBF) and its copolymers with poly(butylene adipate) (PBAd) were synthesized in various comonomer ratios and were blended with 70 wt% PLA using melt compounding. The thermal, morphological and mechanical properties of the blends are investigated. All blends were immiscible, and the presence of the dispersed phases improved the crystallization ability of PLA. Mechanical testing revealed the plasticization of PLA after blending, and a small but measurable mass loss after burying in soil for 7 months. Reactive blending was evaluated as a compatibilizer-free method to improve miscibility, and it was found that when the thermal stability of the blend components allowed it, some transesterification reactions occurred between the PLA matrix and the FDCA-based dispersed phase after 20 min at 250 °C.

Keywords: pla; pla polyesters; furan dicarboxylic; dicarboxylic acid; acid; blending pla

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.