LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spin-Trapping Analysis of the Thermal Degradation Reaction of Polyamide 66

Photo by tabithaturnervisuals from unsplash

The radical mechanisms of the thermal degradation of polyamide 66 (PA66) occurring under a vacuum at a temperature range between 80 °C and 240 °C (which includes the temperature of… Click to show full abstract

The radical mechanisms of the thermal degradation of polyamide 66 (PA66) occurring under a vacuum at a temperature range between 80 °C and 240 °C (which includes the temperature of practical applications) were investigated using a spin-trapping electron spin resonance (ST-ESR) technique, as well as FTIR, TG-DTA, and GPC methods. No significant weight loss and no sign of thermal degradation are observed at this temperature range under oxygen-free conditions, but a slight production of secondary amine groups is confirmed by FTIR. GPC analysis shows a small degradation by the main chain scission. ST-ESR analysis reveals two intermediate radicals which are produced in the thermal degradation of PA66: (a) a ●CH2− radical generated by main chain scission and (b) a −●CH− radical generated by hydrogen abstraction from the methylene group of the main chain. The ST-ESR result does not directly confirm that a −NH−●CH− radical is produced, although this reaction has been previously inferred as the initiation reaction of the thermal degradation of PA; however, the presence of −●CH− radicals strongly suggests the occurrence of this initiation reaction, which takes place on the α-carbon next to the NH group. The ST-ESR analysis reveals very small levels of reaction, which cannot be observed by common analytical methods such as FTIR and NMR.

Keywords: thermal degradation; spin trapping; reaction; analysis; degradation

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.