LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrophobically Modified Gelatin Particles for Production of Liquid Marbles

Photo by theian20 from unsplash

The unique properties and morphology of liquid marbles (LMs) make them potentially useful for various applications. Non-edible hydrophobic organic polymer particles are widely used to prepare LMs. It is necessary… Click to show full abstract

The unique properties and morphology of liquid marbles (LMs) make them potentially useful for various applications. Non-edible hydrophobic organic polymer particles are widely used to prepare LMs. It is necessary to increase the variety of LM particles to extend their use into food and pharmaceuticals. Herein, we focus on hydrophobically modified gelatin (HMG) as a base material for the particles. The surface tension of HMG decreased as the length of alkyl chains incorporated into the gelatin and the degree of substitution (DS) of the alkyl chains increased. HMG with a surface tension of less than 37.5 mN/m (determined using equations based on the Young–Dupré equation and Kaelble–Uy theory) successfully formed LMs of water. The minimum surface tension of a liquid in which it was possible to form LMs using HMG particles was approximately 53 mN/m. We also showed that the liquid-over-solid spreading coefficient SL/S is a potential new factor for predicting if particles can form LMs. The HMG particles and the new system for predicting LM formation could expand the use of LMs in food and pharmaceuticals.

Keywords: gelatin particles; liquid marbles; surface tension; particles production; modified gelatin; hydrophobically modified

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.