LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and Characterization of Functional Polylactic Acid/Chitosan Porous Scaffolds for Bone Tissue Engineering

Photo from wikipedia

In this study, we developed and characterized various open-cell composite scaffolds for bone regeneration. These scaffolds were made from Polylactic acid (PLA) as the scaffold matrix biopolymeric phase, and chitosan… Click to show full abstract

In this study, we developed and characterized various open-cell composite scaffolds for bone regeneration. These scaffolds were made from Polylactic acid (PLA) as the scaffold matrix biopolymeric phase, and chitosan (CS) and chitosan-grafted-PLA (CS-g-PLA) copolymer as the dispersed biopolymeric phase. As a first step, successful grafting of PLA onto CS backbone was executed and confirmed by both FTIR and XPS. Mechanical characterization confirmed that adding CS or CS-g-PLA to the intrinsically rigid PLA made their corresponding PLA/CS and PLA/CS-g-PLA composite scaffolds more flexible under compression. This flexibility was higher for the latter due to the improved compatibility between PLA and CS-g-PLA copolymer. The hydrolytic stability of both PLA/CS and PLA/CS-g-PLA composite scaffolds inside phosphate-buffered saline (PBS) solution, as well as MG-63 osteoblast cell adhesion and proliferation inside both scaffolds, were characterized. The corresponding results revealed that PLA/CS composite scaffolds showed hydrolytic degradation due to the cationic properties of CS. However, modified PLA/CS-g-PLA scaffolds were hydrolytically stable due to the improved interfacial adhesion between the PLA matrix and CS-g-PLA copolymer. Finally, biological characterization was done for both PLA/CS and PLA/CS-g-PLA composite scaffolds. Contrarily to what was observed for uncompatibilized PLA/CS scaffolds, compatibilized PLA/CS-g-PLA scaffolds showed a high MG-63 osteoblast cell proliferation after three and five days of cell culture. Moreover, it was observed that cell proliferation increased with CS-g-PLA content. This suggests that the PLA/CS-g-PLA composite scaffolds could be a potential solution for bone regeneration.

Keywords: pla; scaffolds bone; composite scaffolds; pla composite; pla pla; characterization

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.