LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Investigation on Ablation Behaviors of CFRP Laminates in an Atmospheric Environment Irradiated by Continuous Wave Laser

Photo by bagasvg from unsplash

In order to understand the ablation behaviors of CFRP laminates in an atmospheric environment irradiated by continuous wave laser, CFRP laminates were subjected to a 1080-nm continuous wave laser (6-mm… Click to show full abstract

In order to understand the ablation behaviors of CFRP laminates in an atmospheric environment irradiated by continuous wave laser, CFRP laminates were subjected to a 1080-nm continuous wave laser (6-mm laser spot diameter), with different laser power densities carried out in this paper. The internal delamination damage in CFRP laminates was investigated by C-Scan. The rear- and front-face temperature of CFRP laminates were monitored using the FLIR A 655 sc infrared camera, and the rear-face temperature was monitored by K type thermocouples. The morphology of ablation damage, the area size of the damaged heat affected zone (HAZ), crater depth, thermal ablation rate, mass ablation rate, line ablation rate, etc., of CFRP laminates were determined and correlated to the irradiation parameters. It is found that the area size of the damage HAZ, mass ablation rate, line ablation rate, etc., increased as the laser power densities. The dimensionless area size of the damaged HAZ decreased gradually along the thickness direction of the laser irradiation surface.

Keywords: cfrp laminates; wave laser; ablation; continuous wave; ablation rate

Journal Title: Polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.